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J. Phys. A: Math. Gen. 16 (1983) 3987-4000. Printed in Great Britain 

Determinantal solution of density matrix equations in time- 
dependent quantum mechanics: I. Constant perturbation 

AndrC Fortini 
Laboratoire de Physique des Solides de I’Universiti de Caenf, F-14032 Caen Cedex, 
France 

Received 29 November 1982, in final form 13 May 1983 

Abstract. The determinantal formalism previously built up in the evolution operator 
problem is extended to the density matrix equation in the case, here, of a Heaviside step 
external perturbation, and in the presence of internal collision potential. Reduced deter- 
minantal forms, matched to those first derived for the evolution operator, are obtained 
and compared with both the iterative expansion and the initial Fredholm-Laplace solution. 
They not only exhibit the multiple transition structure of the physical response, along 
with the associated transition width upon expansion, but also the trace conservation 
requirement is shown to be satisfied at any order and all times. An illustration is given 
in a simplified physical system. 

1. Introduction 

A determinantal method derived from a so called ‘Fredholm-Laplace formalism’ has 
been worked out, in previous papers (Fortini 1979, 1981), for solving the Schrodinger 
equation of the evolution operator in the widespread practical cases of an harmonic 
or constant external perturbation. 

The purpose of the present paper is to extend the same mathematical method to 
the density matrix problem. The interest of such a task lies first in the setting up of 
sufficiently general but tractable approximate formulae for the density matrix elements, 
commonly required in a large number of applications, such as semi-classical interaction 
of matter with radiation and transport phenomena. Particularly important in applica- 
tions are resonance problems, in which usual methods often fail, so that for the purpose 
of comparison with experiment, important quantities such as linewidth, damping, 
energy shift are introduced a posteriori in an ad hoc manner. It will be shown that 
the determinantal formalism is able to yield convergent results in resonance cases. 
Connection with the perturbation iterative expansion is brought out at any important 
stage. 

The density matrix response to a given time-dependent external field is much 
more interesting information than the evolution operator, for calculating quantum 
and statistical mean values of observables. Moreover, damping effects which do not 
require a quantum mechanical treatment can easily be incorporated in a phenomeno- 
logical manner. The counterpart of these advantages lies in that the mathematics is 
rather more involved. 
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Another fundamental interest of extending the method to the density matrix 
problem is to take advantage of the inherent unitarity of the determinantal solution. 
It has been pointed out (Fortini 1981) that the determinantal solution of the evolution 
operator does not yield secular terms which are known to be responsible for the lack 
of unitarity in the usual iterative approach. In fact, the unitary requirement of the 
determinantal solution is satisfied at any order, but the demonstration of this important 
property was delayed because it requires the calculation of a convolution integral 
which is nothing other than the density matrix Laplace transformed. Verification of 
the trace conservation theorem at any order is straightforward on a definite reduced 
determinantal expression of the density matrix solution. 

Methods capable of yielding tractable expansions of the time-dependent density 
matrix (Golden 1977, Roberts and Hagston 1979) have been much less investigated 
than for time-dependent wavefunctions or evolution operators. Owing to the above 
mentioned advantages of the knowledge of the density matrix in applications, this 
may appear rather surprising, but there are, strictly speaking, no extra formal difficulties 
in mathematical treatments. 

For the sake of simplicity, we will again restrict ourselves to the often encountered 
cases of static and harmonic external perturbation. The present paper (I) is devoted 
to the static case, in which the essentials of the method can be made explicit in the 
simplest scheme. The harmonic case which, in fact, can' be regarded as a simple 
extension of the static one, will be separately treated in a subsequent paper (11). 

2. Fredholm-Laplace solution for the density matrix 

We will again start with the same typical Hamiltonian of the physical system as in 
Fortini (1981) 

H = H o +  V + A Y ( t ) ,  (2.1) 
where Ho is an unperturbed Hamiltonian whose eigenstates lk) and the related eigen- 
values Ek = hWk are assumed to be known. V represents a collisional potential and 
A Y(r) the interaction with a constant external field, assumed to be applied from t = 0, 
as expressed by the Heaviside step function Y ( t ) .  Although in the present case the 
applied external field and the collisional potential are both constant in time, for t > 0, 
their matrix elements and associated selection rules are generally quite different for 
each of them. The notational distinction will, therefore, be maintained throughout. 
In practice the state basis of Ho+ V is unknown, and the physical response will be 
formulated with the help of expansions on the unperturbed basis of Ho. This proves 
quite valid .as long as collision events are sufficiently rare and of moderate strength, 
and will give rise to collision broadening of transitions which differ markedly from 
the natural broadening associated with the external field A .  In particular applications, 
the distinction between the V and A contributions to the result will be further enhanced 
if the initial state is specified to be, as often occurs, a mixing of Ho + V eigenstates. 

The density matrix p ( f )  is connected with the evolution operator U ( [ )  by the well 
known equation 

P O )  = U(t)P(O)U'(l) (2.2) 
and satisfies the following equation of motion, directly derived from the time-depen- 
dent Schrodinger equation for U ( t )  

dpldt = (ih)-'[H, p ( t ) ] .  
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We will introduce the Laplace transform of p ( t )  defined as 
m 

R ( v )  = lo e-"'p(t) dt 

dpldt 2 v R ( v ) - p ( O ) ,  

~ R ( v )  =p(O)+(ifi)-l[H0+ v + A , R ( ~ ) ] .  

o r R ( v ) c p ( r ) .  

Since 

the Laplace transform of equation (2.3) is given by 

(2.4) 

Taking this equation between the states b and c 

v R ; ( v )  = p i ( 0 )  - iw,J?;(v) + i f 1 [  ViR k ( v )  - R ;  ( v )  Vk ] + iZI-'[A;R b" ( v )  -R; (v)Ab"], 
(2.6) 

where R ; ( v )  = (clR (v) lb) ,  Wcb = wc -oh,. Summation over repeated indices is, as usual, 
implicit. In the following, p;(Oj will be written as p i ,  as long as no confusion may 
occur with p ; ( t ) .  

In Fortini (1981) we have constructed the linear system whose complete solution 
is represented by the 'column-vector' defined by the F: ( v )  6-components of the 
Laplace transformed F ( v )  c U ( t )  of the evolution operator. The row index is the 
superscript b, whereas the subscript a only refers to the initial pure state in which the 
system is assumed to be confined at t = 0. In other words, F ( v )  is a vector belonging 
to the Hilbert space gH0 sustained by the eigenstates of Ho. 

Analogously, R ( v )  will be regarded as a vector belonging to the tensorial product 
of %H,, by its own dual %'Lo 

g H o H o  = g H o  @ 8 Ti,, 
and R ; ( v )  will denote the cb component of this column-vector. Equation (2.6) defines 
a linear system obeyed by the R;. 

In order to rewrite this equation in a much more convenient form, we will define 
the kernel K operating in the gHoH0 space by 

(2.7) (ClblJKIC262) =Id::;: = K::S:: -S:;K:;, 
where 

KS; =ifi-'(VS; +A',;) 

is the kernel previously defined in the gH,, space, in which we will still make the 
assumption that the diagonal elements of the perturbation are zero, i.e. 

v: =o,  A t  = 0. 

The adopted indices in the kernel (2.7) are such as to preserve the convenient 
notation K ;  of the cb matrix elements, together with the subscript-superscript position 
of adjacent repeated indices in implicit summations. Regarded as a column-vector 
of the gHoH0 space, R will be denoted R, and the R; component as 

Ri 'RCb s(cbIR). 

Since cb refers to a row index, the kernel matrix element (2.7) must be read as 

column index 
/- 

'- row index 
K',& (2.9) 
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It must be outlined that, in (2.7) KS (or S K )  is not the product of two operators 
belonging to gHO, but a convenient symbol for denoting a specific operator of % H " H ~ .  

Let us now examine conjugation relations. Owing to the hermiticity of iK, we have 
(K:; )* = -ih-'(vS; +A'>) CI = -K:;. 

Then 

(KS)' = -KS, (SK)' = -SK, (2.10) 

(c 26  2 I (KS )+I  c 1 6 1 )  = ( (c 1 6 1 IKS I c 2 6  2)) * 
since 

= (Kz;Sf")* = -KC2Sb1 C I  b2 = - ( c  26 2 I K S  I c 16 1 ). 

The hermiticity of K follows as 

K +  = -K (2.11a) 

i.e. 

(K:; i ; )*  = -K:ik? = KL;:; (2.116) 

on account of definition (2.7). Besides the introduction of the kernel K, we shall put 

dcb = U + iW,b. 

This quantity is a particular eigenvalue of the operator 

d = u l  + ih-'Ho, (2.12) 

where 1 denotes the identity operator in and 

Ho = H,S - SHO (2.13) 

is defined in the same manner as K.  
With the help of these definitions, (2.6) can be rewritten in the compact form 

d c S C b  + K : ,  b$RC'bl = p i ,  

equivalent to 

(d +K)IR)  = Ip), or ( l + d - ' K ) I R ) =  d-'lp). (2.14a, 6 )  

The kernel K is analogous to the 'superoperator' introduced by Barker (1973) in 
transport problems and the tensorial device K = KS - SK provides a convenient means 
of calculating its repeated action on vectors of the gHoH0 space. Operators in EHo 
become vectors in %HuHo and superoperators become operators. The K action on any 
U could as well be written 

KIO) = IN, O D ,  (2.15) 

with the evident trace property 

Tr[K, 01 = (661KIU) = 0. 
bb 

(2.16) 

We now write out the general solution of the linear system defined by (2.146). 

RCb = ( D ~ ~ ~ / d ~ , b , D ) p ~ ~ ,  (2.17) 

Current matrix elements of R are given by 
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where D denotes the determinant of the system, i.e. 

D = det(1 + d - ' K ) ,  (2.18) 

and 0:;; the algebraic minor at the crossing of the c l b l  row and the cb column 

,- row index 

'L- column index 
D:?(;l (2.191 

Notice the inversion of the meaning of the indices relative to the kernel (2.9). 
The mathematical tools used in Fortini (1981) to derive reliable expansions of 

determinants in increasing orders of the kernel can be used without any extra formal 
difficulty. Assuming the system is, initially, in a state distribution defined as 

(2.20) 

(2.21) 

with c lb l ,  c 2 b 2 ,  . . . f a'u in the numerator, and c #6.  In diagonal bb elements (they 
are diagonal in the iYHC1 space), the p :  contribution must be written separately, 

1 - ( K ~ ~ ~ ~ K ~ ~ ~ ~ / 2 !  dClbldc2b2) -I-. . . 
Rbb=-  Pi 

dbb[l -(K::~:K::~:/2!dc,b,dczbz)+. . .I 
(2.22) 

where c lb l ,  c2b2 , .  . . f 6b (or a ' u )  in the numerators. The successive terms can easily 
be written, for instance, by using the exponential or operational expression of D and 
non-diagonal minors (equations (A6), (20) and (A12) in Fortini (1981)). 

Complete division in (2.21) and (2.22) yields the iterative expansion for the density 
matrix elements. Thus 

(2.23) 

where index restrictions have now vanished. Using the operational form of deter- 
minant quotients (see (A15) in Fortini (1981)), this can be written 

RCb =d, . ' , (cb1(1+d-'K)- ' la'a)p~' .  

In this form the result can be directly derived from (2.146). Similar expressions can 
be written for the iterative expansion of the diagonal element Rbb. 

Expressions (2.211, (2.22) and (2.23) represent the convolution integration of the 
analogous expressions of the related F ( v )  matrix elements, according to the Laplace 
transform of (2.2) 

R(vj  = [ F ( v ) * F ' ( v ) l p ( O j ,  (2.24) 

where the asterisk stands for convolution integration. We can verify that the hermiticity 
property (2.116) of K ,  and that of d(d&=db,) ,  when applied to (2.21), leads to the 
conjugate of RCb = (F',, * ~ i " ) p i ' ,  which is given by (RCb)* = (F:  * ~ : " ' ) p : ,  = R  b C. 
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Since the above expressions represent the exact solution of the time-dependent 
Schrodinger equation of the density matrix, they are expected to satisfy the trace 
conservation theorem 

Tr p ( t )  = 1 

at all times, inasmuih as Tr p ( 0 )  = 1. This simply results from the hermiticity of the 
hamiltonian operator (2.1). However, in the iterative perturbation expansion as well 
as in the Fredholm form of the solution, this mathematical requirement arises in a 
form of little practical interest. Consider first the Fredholm form. Equation (2.17) 
can be rewritten as 

(2.25) 

where the bb term is separated out in the right-hand side (a'a # 66). Expanding D 
by the bb row then gives 

(2.26) 

On the other hand, rewrite the a'a row in place of the bb row. The resulting 
determinant is zero, so that on expanding it by the a'a row 

oph + ( i / v ) ~ , b : ; ~ : : ; ,  =o.  (2.27) 

R bb = ( D  :;/ VD )p b" + ( D  ?b /da r& )p  z ' ,  

D = D;; + (11 v)K::iDibf. 

The substituting Dbb: and D::, in (2.25) from (2.26) and (2.271, we obtain 

Rbb = (1 - K::i OS$/ vD)p; /  v - (K::h D2:, / vd,,,D)p: (2.28) 

(a'a # 66). A similar expression, written in perturbation series, can be derived upon 
performing the divisions by D 

Rbb = [ l  - (bbIK(f  +d-'K)-'d-llbb)]p~/v -(bbIK(f +d-'K)-'d-'la'a)p~'/v. (2.29) 

Owing to the property (2.16), in further summing over b, the second and the third 
term in the right-hand side of (2.28) and (2.29) cancel each other out, since 

1 (K::;D$:/ VdC2b,D)p2 =O.  
bb 

which results in the trace conservation as 

c R bb = ( 1/ v )  c p k = 1/ V. 
bb b 

If the total number of states in the system is sufficiently large, the long time limit 
of the last term in (2.28) or (2.29) should sum up to 1 in the trace, whereas the 
remaining terms in pk should decrease toward zero, in accordance with the physically 
expected population transfer from initial to final states. This is not clearly visible on 
the Fredholm form, but was established with some assumptions by Van Hove (1955) 
in the iterative expansion case. Furthermore, as discussed in Fortini (1981), Fredholm 
expressions cannot be used in applications for they involve spurious terms without 
physical meaning in both numerators and denominators. Iterative expansions, on the 
other hand, involve divergent secular contributions which finally cancel in the trace, 
but render partial summations of little practical interest. We are going to see, in the 
next section, that the solution R ( v )  can be given a considerably improved form through 
a suitable extension of the 'reduction' procedure elaborated in Fortini (1981) 
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3. Reduced determinantal expressions of the density matrix solution 

3.1. Reduction of the Fredholm solution 

From (2.14a), R is formally given by 

IR) = (d + K)-' lp) .  

Assume, for simplicity, the system initially in a pure a state 

(3.1) 

Id = 14. 
Bearing in mind that the spirit of the reduction procedure consists in a reformulation 
of determinant expansions so as to emphasise the starting state, expression (3.1) of 
the solution will first be identically rewritten as 

(3.2) IR) = (d + K)- ' (d  + KQ,,)d-'Iaa). 

Pa, and Qaa = 1 -Pa, denote the projector on the aa state, and the complementary 
projector, respectively. We have, equivalently, 

(l+d-'KQa,)-'(l+d-'K)IR)= d-'laa). (3.3) 

Making use of the splitting 

d-'K = d-'KQ,, +d-'KP,,, 

this equation can also be written as 

[1+ (l+d-'KQaa)-'d-'KP,,]~R) = d-'Iua). (3.4) 

The vector IR) can now be regarded as the solution of the linear system defined by 
the operator on the left-hand member. Calculation of the related determinant and 
minors is straightforward (see Fortini (1981) Appendix A). We thus have 

D = det [ l+  (1 +d-'KQ,,)-'d-'KP,,], 

= 1 +(aa~(l+d-lKQ,,)-'d-lK/aa), 
= 1 +(aa~d-'K(l+Q,,d-'K)-'~aa), 

and, similarly, for the cb-aa minor 

D z  = -(cb1(1 +d-'KQ,,)-'d-'Klaa), 

= -(cb Id-'K(l+ Qaad-'K)-'laa). 

These expressions suggest the introduction of the Sa, operator defined by 

Sa, = l+Qaad-'K (3.7) 

which only differs from the initial one, (2.14b), by the presence of the complementary 
projector Qaa. Returning then to a general initial distribution (restricted to diagonal 
elements for simplicity), the R- components will be written in the form 



3994 A Fortini 

for c # 6, and 

(3.9) 

for any diagonal component bb (bb # aa in the second term). Use has been made of 

It is readily realised that a systematic way of obtaining (3.8) and (3.9) may consist 
in using the reduction procedure introduced in Fortini (1981). A simple comparison 
of equations (3.3) and (2.146), rewritten for the same initial condition as 

dbb = daa r; V. 

(1 +d-'K)IR) = d-lpzlaa), 
aa 

shows, indeed, since 

and 

(3.10) 

(3.11) 

(3.12) 

where the symbol D refers, here, to determinant and minors pertaining to (3.10). 
Carrying through the determinant divisions in (3.11) and (3.12) again gives the results 
(3.8) and (3.9). These can be further detailed by means of expansions in d-'K. 
The second-order expression of RCb, for instance, is written as follows 

(3.13) 

with clbl ,  cZb2,  . . . # aa in both the upper and the lower series. 
It must be emphasised that the strategy of the reduction, at this stage, lies in the 

elimination of broadening terms starting from states other than the proper initial state 
a. The Fredholm forms (2.21) and (2.22), instead, involve broadening contributions 
starting from any intermediate state in the evolution of the system. This elimination 
proves particularly useful when further summations on intermediate states are required 
by the particular structure of the system spectrum, e.g. in the continuum limit. 

3.2. Trace conservation 

Intimately connected with the elimination of 'intermediate' contributions to broaden- 
ing, is the quite important property possessed by the foregoing expressions satisfying 
the trace conservation requirement in a much more tractable form than the Fredholm- 
type results do. Consider the second term in (3.9); making use of the property (2.16), 
we have 
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Hence 

and, since b is now a dummy index, 

(3.14) 

Unlike what occurs in (2.28) or (2.29), the instantaneous occupation probability of any 
state, (3.9) or (3.12), now pictures much more clearly the actual physical situation. 
Upon simple examination of the above expressions, it is quite obvious that the initial 
population of any b state decreases toward zero in increasing time, whereas the transition 
induced population in the same state tends toward some definite value. The overall final 
occupation probability, at once, tends toward unity. It must be emphasised, further- 
more, that these properties are satisfied at any order, as could be shown by replacing 
the formal operator with their equivalent expansions. This is of considerable import- 
ance in applications, particularly in resonance phenomena. 

3.3, Further reduction of the solution 

Long-term values of expressions (3.8) and (3.9) often reduce to their numerators in 
a wide class of applications (long lifetime of excited states with regard to the pre- 
dominant collision relaxation time), so that the iterative expansion is recovered, 
avoiding broadening effects. Direct calculation of (2.24), on the other hand, using 
reduced quantities for F matrix elements (this is possible in some cases) leads to more 
detailed expressions than (3.8) and (3.9). To get formulae of practical interest, 
immediately satisfying trace conservation, we thus have to take the reduction process 
one step further, as follows. 

The matrix elements appearing in (3.8) and (3.9) can, in turn, be considered as 
the components of vectors X which are solutions of the following type of matrix 
equations in the gHoH0 space 

(1 +d-'KQaa)IX) = d - ' K / a a )  = K!d-'lka) - K W ' l a k ) ,  (3.15) 

for the system initially in the a state. Thus 

(cd ld-'KS,-b IUU) = (Cb lx) = X E b ,  etc. . . 
Separating out the initial state ka (or uk) in the solution of (3.15), in the same way 
as in (3.2), leads to expressions of the xcb similar to (3.8) and (3.11) 

(3.16) 

where the D now pertain to the system (3.15). In the operational form 

with 

Saaka = 1 + QaaQkad-'K, etc. . . . 
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The expressions (3.11) and (3.12) of RCb and Rbb will be finally written, in the second 
reduction stage, as 

(c # 6)  and 

(3.18) 

(3.19) 

(a # 6). X ' s  matrix elements are assumed to be given by the solutions (3.16) or (3.17) 
of (3.15), the relevant initial state of which is recalled in a bracket. Subsequent 
practical formulae will next be obtained through expansion of the operational forms, 
as in (3.13). Trace conservation is again satisfied at any time, and any order. Proceed- 
ing as in P 3.2, we first have -&bzaa (661d-'KS;;,'kalka) = (l/v)(aalKS;;alkalka), 
whence -&bXbb(aa) = ( l /v )Xaa(ua) ,  and from (3.19) 

Finally, the above determinantal expressions remain wlid in the continuum limit 
where summations over dummy indices are replaced by integrations. Care must be 
taken, however, in allowing the number of states to become arbitrarily high, because 
we are not sure that the limit of any particular subset of the discrete sums is the same 
as the subset of the limit, as has already been discovered for the Fredholm solution 
in Fortini (1981). It is recommended, therefore, to pass to the continuum limit only 
after having performed all intermediate calculations on discrete summations. It will 
be appreciated, for example, that replacing every term in (3.19) with its limiting value 
preserves trace conservation. 

Of course, the continuum limit can be considered in the calculation of the original 
function as well. As discussed in Fortini (1981), continuous parts of the spectrum 
then give rise to cuts in the v plane. In practical applications, however, it is often 
sufficient to retain the steady-state value of the density matrix, which is obtained as 
t+m. The latter is directly derived from the Laplace transform R ( v ) ,  by using the 
well known rule 

p ( t + m ) =  lim [ v R ( v ) ] .  
"-+O 

4. Application to a simple model 

We reconsider the simple physical system already dealt with in Fortini (1981). The 
constant perturbation A which is switched on at t = 0, induces transitions from the 
initial pure state a into any state 6, c , .  . . . which belong to a quasi-continuum. 
The collision potential is zero (or included in the definition of Ho).  The Hamiltonian 
is written as 

H = H o + A  Y ( t ) ,  (4.1) 

K = ih-'A, K = ih-l(A8 -SA). (4.2) 

so that 



Solution of density matrix equations in QU: I 3997 

It is easy to write down second-order expressions of the density matrix elements 
as a simple application of the above formulae. Let us first consider the reduced form 
(3.8) of any element R C b ( C  # b )  

(cb Id-iKQ,.d-lKlaa) 
RCb = 

v - (UU IKQ,,d-'K(aa) 

= -  d,-d h-Z(A:,Sil -6:,Ai')di:b, (A:'SZ, -S:lA:l) 
v + h-'(Az,Sb,' -6~,Ab,1)d~~bl(AC,'8~, -S:'Ag,) 

~-'A:A; (v + iwca )-' + (v + iwob )-' 
v + iwcb v + (IA:1'/h2)[(v +iwka)-l + (v +iwak)-']* (4.3) 

This expression also applies to the diagonal element Rbb(b # a ) ,  with c = b. As to the 
diagonal element R", which represents the occupation probability of the initial state, 
we get from (3.9) 

- - 

R", = (V -(uuIKQ,,~-~K~uu))- '  

Equations (4.3) and (4.4) lead to the following second-order expression of the trace 

in accordance with the trace conservation requirement, (3.14). 
Direct convolution of F: ( v )  and Fb+"(v), initially derived in Fortini (1981), leads 

to more involved expressions than (4.3) and (4.4). The latter will be recovered by 
using the reduced forms given in (3.18) and (3.19), with the help of the operational 
expression (3.17) of the relevant determinant ratios. From (3.18): 

We then have to second order in A 

Consider, next, the bracket in ka 
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The first term on the right drops out since it is assumed that no transition can occur 
from any k state of the final continuum. The similar bracket in ak, in (4.6), is simply 
the conjugate of the previous one. In the denominator, we calculate one of the two 
conjugate terms 

1 ih-'(uu lKSi:la 1aa)A a = -K2(APSZ -SPA :)A f, 
= -/AL/2/h2. 

We finally obtain the second-order expression of RCb as 

[ U  +iwca + ( f ~ - ~ / A ; / ~ / ( v  +iwCm))]-' 

(4.7) 

and for the initial state occupation 

Trace conservation is evident in equations (4.7) and (4.8) 

(4.9) 

The calculation can be pushed further if we assume that the A matrix elements are 
constant in the relevant spectral range (wl, w 2 )  which is, in fact, confined to final states 
of energy close to wa. We will take 

wh = = 

If, in addition, the density of states O ( w )  is slowly varying in that range, the function 
@ ( w )  can be averaged to a constant value taken out of integrations. Consider, therefore, 
the second-order complex transition widths appearing in (4.7) and (4.8). A term such 
as K21Ar12/ (~  +iwm6),  where summation over m is implied, is approximately given 
by the following integral 

which takes the following value along each side of the cut (-iw2, - iwl)  (see figure l ( u ) )  

where 

and the sign before Y b  is + or - according to whether the cut is approached from the 
right- or left-hand side. 
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Figure 1. Cuts in the complex v(6,  7 )  plane used for calculating the complex transition 
width (a,  b ) ,  and the original (c )  of the density matrix Laplace transform in the simplified 
model. 

As the natural logarithm in /i?b is a smooth function of q, and, in addition, q -0 

o b  ( Y b / r )  In I u Z b / u l b l .  (4.1 16) 

owing to energy conservation, we will take f i b  as a constant 

Proceeding the same way (figure 1(6)), we then have 

h-21AT12 . IAIZBc v +iucz c v+iwcm = 1 7 I n =  

Because the energy of the relevant c, 6, I ,  m states is close to Aw,, to within the 
transition width, the constants /i? and y have nearly the same value in all complex 
linewidths appearing in (4.7) and (4.8). Moreover, inasmuch as the energy range of 
interest (ul, uz) is sufficiently larger than the p, y, the remaining integrations over f 
in the denominator are given by 

and a conjugate term. 'We finally obtain the following approximate expressions of 
R i  and RZ, when v lies along the cut (v = iq) 

Calculation of the time-dependent original functions is elementary. From (4.13) 
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and the case of R ; ( V )  can be treated using the same method as in previous publications 
(Fortini 1979, 1981). The result is as follows 

(4.15) Pcb(t1 = U: !t)U,'" ( t ) ,  

with 

and a related expression for U i a  ( t ) .  
We have therefore reconstructed the product of the corresponding solutions of 

the evolution operator previously given in Fortini (1981). This is not at all surprising, 
but it must be pointed out that the result is obtained by using the detailed reduced 
form, (4.7), instead of the first one, (4.3). 

From (4.15) the current diagonal element is written as 

which is formally identical with the result (24) of Fortini (1979), and leads, with (4.141, 
to the trace conservation at any time of the second-order determinantal solution 

p : ( t ) +  1 p t ( t ) =  1.  
b + a  

This is the original of equation (4.9). The latter, however, is valid far beyond the 
simplifying assumptions of the present application. 

5. Conclusion 

By means of an appropriate definition of the commutation kernel in the pair-of-states 
representation, we have been able to formulate a determinantal solution of the density 
matrix time-dependent problem, derived from the initial solution of the Laplace 
transformed Schrodinger equation, in the case of constant external perturbation. An 
elementary mathematical presentation has been used throughout, allowing a trans- 
parent monitoring of the trace conservation theorem at any time and any order of 
the kernel, even in the continuum limit. Practical methods for calculating explicit 
expressions of the response, in increasing orders, have been given. Although the 
illustration is restricted here to a simple model, the determinantal formalism is likely 
to be relevant in a wide range of physical situations. 
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